

AppSec-labs
Website: www.appsec-labs.com

 EvilQR – when QR code goes bad

A security assessment of mobile QR readers
Chilik Tamir (www.appsec-labs.com)

Abstract:

Quick Response code, also known as QRCode has been around for several years, but in the

last months there has been an incline in adoption of QRcodes as a marketing channel. A

QRcode can encode a variety of information into a 2-dimentional barcode that is presented

to the costumer. Customers are often referred by vendors into scanning QRCodes in order to

receive coupons, discounts or other marketing media such as website, flash movie etc. The

QRCode is parsed by QR-reader software on a mobile phone equipped with a camera. The

true nature of QRcode content is an enigma until it is scanned; there is no possibility for the

customer to authenticate the content of a QRcode without scanning it first. Because of the

latter fact, an attacker with evil intent could craft a malicious QRCode (or EvilQR) and lure an

innocent customer to scan it. Once scanned, the evilQR would be parsed by the customer

mobile phone software and would initiate its' attack. Attack vectors could vary from

browser-based such as Cross-Site-Scripting (XSS) to specific buffer-overflow and command

injection. The key for a successful attack lays in the default behavior of the mobile QRCode

reader software. If as an example, a QRCode reader parses a link from an evilQR and

preforms a URL redirection without proper confirmation of the customer - the attack would

succeed. In this assessment we have compared the default behavior of several QR-readers

for and noted their behavior upon the parsing of two evilQRs. Best practices for mobile users

are also discussed.

The problem:

 An innocent customer can be easily tricked into scanning a malicious-crafted QRCode

(evilQR) by an attacker, upon scanning the customer mobile would be attacked by the

encoded payload.

Motivation:

The motive for executing such attack is very clear - the mobile phone is a gold mine for an

attacker, because today's phone contains very sensitive information such that can be abused

by an attacker in several ways:

• Personal information compromised by an attacker could lead

to impersonation, fishing and identity theft

• Calendar and meetings compromised by an attacker could lead to

business or other information disclosures.

• Address book compromised by an attacker could lead

to impersonation, fishing and identity theft

• Private and Cooperative email access compromised by an attacker

could threaten internal business IT infrastructure.

• Geo-location compromised by an attacker could lead to harassment,

surveillance and privacy loss

AppSec-labs
Website: www.appsec-labs.com

• Connectivity – (3G, GPRS, Wi-Fi, Blue-Tooth, etc.) could enable the

attacker to remote control his attack

• Credit card information compromised by an attacker

• Social networking accounts (Twitter, Facebook, Path, LinkedIn, etc.)

compromised by an attacker could lead to defacement,

impersonation fishing and identity theft

Assessment:

Our assessment goal was to verify that QRCode reader software will not process an evilQR

payload without proper confirmation from customer. In order to perform the test two test

cases were created:

a. JavaScript QRCode:

In the first test case we have encoded a simple java-script code into an evilQR. The java-

script that was used was very simple – an alert

message that is shown upon parsing. This test

demonstrates a simple case of a Cross-Site-Scripting

web attack (XSS). In this kind of an attack the

customer web-browser is lured into executing

malicious code on behalf of the customer current

context and permissions. The object of this test case

was to test the autonomous parsing capabilities of

the QRCode reader software. If the QRCode reader

software executes the java-script code without

proper confirmation of the customer – the test is

regarded as failed, whereas if the QRCode reader

software executes the java-script code only after

customer notification – the test is regarded as success.

b. Web link to a malicious site:

In the second test case we have encoded a simple web link into a QRCode. The web link

refers to http://www.appsec-labs.com as an example

for an evil website. This test demonstrates a simple

case of a fishing web attack. In this kind of an attack

the customer web-browser is lured into visiting a

malicious website that will attack the customer. The

object of this test case was to test the autonomous

website redirection capabilities of the QRCode reader

software. If the QRCode reader software performs

redirection to the encoded website URL without

proper confirmation of the customer – the test is

regarded as failed, whereas if the QRCode reader

software executes the website redirection only after

customer notification – the test is regarded as success.

In hope to shed light on the likelihood of this attack, we have chosen fourteen different

QRCode reader applications, and kept their setting to the default. For each application we

evilQR 1: QRCode with payload:
hello<script>alert('XSS')</script>hello

evilQR 2: QRCode with payload:
http://www.appsec-labs.com

AppSec-labs
Website: www.appsec-labs.com

performed two scanning cycles. The first was aimed to test the autonomous java-script

parsing of the QRCode reader application using the first test case. The second was aimed to

test the autonomous parsing of website URLs by the application.

Results:

The QRCode reader assessment comparison chart is shown below (Table 1). We can learn

that from the selected applications only one was found vulnerable to java-script evilQR

(QuickMark). Furthermore, we can deduce that about 35% of the applications that were

used were found vulnerable to direct website redirection. These results confirm our prior

assumption that QRCode reader application may be used to introduce a malicious evilQR

and to inflict an attack on an unaware customer. What more can be learned from the table

below is the fact that the current QRCode reader applications parsing of java-script is not yet

fully supported by the majority but could be but could be in the near future.

Table 1: Comparison table of application performance in two tests

 From these results we can confirm that the evilQR attack vector is indeed a widespread

phenomenon, and it should be taken into consideration by customer and application

vendors.

Recommendations:

Many QR-reader software are delivered with default setting of the QR reader to interact with

URI links automatically. This behavior may expose the mobile user into scanning an evilQR

which will be parsed and trusted by the user's QR-reader software.

As a general security recommendation to our customers follow these thumb rules:

a. You should choose a configurable QR-reader software that

enables you to confirm QR-code output prior to its' acceptance.

b. Never scan a QR-code that has an unknown origin

c. You can check if your mobile QR reader is vulnerable by

scanning the two evilQR above

Application Test a: java-script parsing Test b: website redirection

TapReader (TapBase LLC) No Parsing User confirmation

QR+ (Alexandr Balyberdin) No Parsing User confirmation

QRReader (Tap Media Ltd) No Parsing Automatic Redirection
Scan (QR Code City, LLC) No Parsing Automatic Redirection
RedLaser (Occipital, LLC) No Parsing User confirmation
i-nigma (3GVision Ltd) No Parsing Automatic Redirection
BeeTagg (connvision AG) No Parsing User confirmation
QR Code Reader (ShopSavvy, Inc.) No Parsing Automatic Redirection
QuickMark (SimpleAct Inc.) JavaScript Execution Automatic Redirection
QR+Emoji (Ching-Lan Huang) No Parsing User confirmation

Bakodo (Dedoware Inc.) No Parsing User confirmation

Optiscan (Airsource Ltd.) No Parsing User confirmation

QR-Scanner (Grip'd LLC) No Parsing User confirmation

quiQR (Mark Tholking) No Parsing User confirmation

