

DDAANNGGLLIINNGG PPOOIINNTTEERR

SMASHING THE POINTER FOR FUN AND PROFIT

JONATHAN AFEK
ADI SHARABANI

A whitepaper from Watchfire

DANGLING POINTER EXPLOITATIONS

© Copyright 2007. Watchfire Corporation. All Rights Reserved. 1

TTAABBLLEE OOFF CCOONNTTEENNTTSS

1. ABSTRACT ... 2
2. UNDERSTANDING THE DANGLING POINTER BUG ... 3

Dangling Pointer – A Common Coding Mistake.. 3
4. CODE INJECTION .. 5

Object Implementation ... 5
Implementation of a Method Call.. 6
Exploitation 1: Double Reference Exploitation.. 7
Multiple Inheritance... 9

Implementation.. 9
4. PINPOINTING THE OLD OBJECT’S MEMORY ... 11

Allocation API.. 11
Allocation Implementation.. 11
Locate Memory Allocations.. 12

Static Analysis... 12
Dynamic Analysis ... 13

Lookaside Injection Exploit .. 13
5. IIS BUG EXPLOITATION – A REAL WORLD EXAMPLE ... 15

Finding the Bug.. 15
Under the Hood.. 15
Exploit ... 15

De-allocating the Object .. 15
Configuration Item .. 16
Shellcode .. 19

6. RECOMMENDATIONS ... 19
7. SUMMARY ... 20
8. REFERENCES .. 21

DANGLING POINTER EXPLOITATIONS

© Copyright 2007. Watchfire Corporation. All Rights Reserved. 2

1. ABSTRACT

When writing an application, developers typically include pointers to a variety of data objects. In some
scenarios, the developer may accidentally use a pointer to an invalid or deallocated object, causing
the application to enter an unintended execution flow. This usually causes the application to crash, but
can result in far more dangerous behavior.

This class of bug is referred to as the Dangling Pointer, and unfortunately it is a common
programming malpractice.

While a Dangling Pointer bug can be exploited for arbitrary remote code execution or for information
leakage many developers refer to it as a quality problem and even security experts to date have not
considered it to be a severe security issue. In reality, however, this problem is every bit as dangerous as
buffer overflows. Currently there is no publicly known exploitations of this type of bug. “While it is
technically feasible for the freed memory to be re-allocated and for an attacker to use this reallocation to launch a
buffer overflow attack, we are unaware of any exploits based on this type of attack.”[1]

This paper will present the first of its kind exploitation of a Dangling Pointer bug, by demonstrating a
real-world attack on Microsoft IIS 5.1 web server. The IIS vulnerability that will be used in this
demonstration was first publicly disclosed in December 2005 [2], but hasn’t been considered as a severe
security flaw and thus has not been fixed as of this time. This highlights the fact that despite disclosure,
Dangling Pointer issues are not taken seriously.

This whitepaper will present a complete instruction manual to researching and exploiting Dangling
Pointer vulnerabilities using the real case IIS vulnerability.

DANGLING POINTER EXPLOITATIONS

© Copyright 2007. Watchfire Corporation. All Rights Reserved. 3

2. UNDERSTANDING THE DANGLING POINTER BUG

DANGLING POINTER – A COMMON CODING MISTAKE

In many applications memory is allocated memory for holding data objects. After using these objects the
application eventually de-allocates their memory, in order to save system resources. In some cases, the
application may use a pointer to an object whose memory was already de-allocated. If that happens,
the application will enter an unintended execution flow which could lead to an application crash or even
more dangerous behavior.

Two typical scenarios result in Dangling Pointers:

• The application makes use of a C++ object after it has been released, and thereby accesses an
invalid memory location,
OR

• A function returns a pointer to one of its local variables, and since this local variable is defined
only for the function, the pointer becomes invalid once the function ends.

The following diagram illustrates the normal pointers in an application, and a Dangling Pointer.

In the above scenario, using the Dangling Pointer may produce unexpected results, since it points to an
invalid memory chunk.

The most common result of this bug is the crash of the application or its running thread. This is a
nuisance, but not a code injection security threat. However, imagine if one could control the data that the
Dangling Pointer points to. If that were possible, one could alter the behavior of the application and even
inject malicious code into it.

In order to pursue this path, we need to consider the following questions:

• With what content should I override the old object’s content in order to inject code?

Pointer Pointer Pointer Dangling
Pointer

Object

Object

Deleted
Object

The Dangling Pointer points
to a de-allocated memory
chunk that used to hold the
original object.

DANGLING POINTER EXPLOITATIONS

© Copyright 2007. Watchfire Corporation. All Rights Reserved. 4

• How can I use the application flow to override the exact location of the old object with user
supplied data?

• Is there a generic way to exploit this bug and execute an arbitrary code?

In the course of this whitepaper, these questions will be answered.

This paper has the following general structure:

1. Code Injection: We will discuss the content of the overwritten data and how it should be set in
order to execute arbitrary code. This will include the first Dangling Pointer exploitation technique.

2. Pinpointing the Old Object’s Memory: We will discuss ways to make the application allocate
memory on top of the older object’s place. This section will include two further Dangling Pointer
exploitation techniques

3. IIS Bug Exploitation: We will show a real world example of a Dangling Pointer bug in Microsoft
IIS 5.1 and how to exploit it.

DANGLING POINTER EXPLOITATIONS

© Copyright 2007. Watchfire Corporation. All Rights Reserved. 5

4. CODE INJECTION

As described above, the dangling pointer bug can be used to inject code into the application. In this
section we will highlight a technique to accomplish this, but first we need to better understand how an
object oriented compiler implements the application’s objects.

The implementation described in the next section is a typical object implementation. We will describe the
implementation of a Microsoft’s C++ compiler. These may not be shared exactly by other compilers, but
the same concepts can be applied to them.

OBJECT IMPLEMENTATION

Every object in the application resides somewhere in its memory. All members of the object reside in the
memory area allocated to it. Objects that use virtual functions also contain a pointer to their VFTABLE
(Virtual Function Table), which is a table of pointers to the object’s virtual functions. The VFTABLE
pointer is always located in the first DWORD of the object’s memory area.

Let us consider a simple class called Class_A written in C++. The class contains a member of type int,
and different types of methods.

The data implementation of an instance of Class_A can be seen in the following diagram.

class Class_A
{

 int member_of_A;
 public :

 virtual long vfunc_A1();
 virtual long vfunc_A2();
 static void sfunc_A();
 void funcA();

};

vfunc_A1 Code

Class_A VFTable Instance of Class_A

vfunc_A1 address

vfunc_A2 address

VFTABLE Pointer

member_of_A

Assembly code

The memory of an instance of Class_A:
The first DWORD is a pointer to the
VFTABLE, while the rest of the memory
contains the object’s members.

The class’ VFTABLE :
This is an array of
pointers to the virtual
functions of the class.

vfunc_A2 Code

Assembly code

DANGLING POINTER EXPLOITATIONS

© Copyright 2007. Watchfire Corporation. All Rights Reserved. 6

The VFTABLE is compiled into every instance of the class; the static functions and the regular methods
are not. They reside in the application’s memory once for every object type. (The reasons for this are
beyond the scope of this paper.)

IMPLEMENTATION OF A METHOD CALL

When the application calls an object’s virtual function the assembly code calculates the location of that
function using the VFTABLE of the object. Knowing the location of the specific function to be called, the
assembly code selects it from the VFTABLE and calls it. This is shown in the example below.

Example code:

…
MOV ECX, (Object’s address); Assign ECX with the object’s address
…
MOV EAX, [ECX]; Assign EAX with the value of [ECX], which is the fi rst DWORD that
resides in the memory location pointed by ECX. This means EAX will point to the
VFTABLE.
…
CALL [EAX + 8]; CALL [EAX + OFFSET] - Where OFFSET is the relative location of the
function to be executed within the VFTABLE list. Th is will execute the required
virtual function (in this case the third).

…

Virtual functions are very common in C++ objects and therefore very likely to be called. Virtual
functions are essential for the three types of exploitation we will be discussing.

Another important point to note is that a good C++ developer will implement C++ destructors as virtual
functions, and that these destructors will eventually be called—as every object is destructed when no
longer needed.

DANGLING POINTER EXPLOITATIONS

© Copyright 2007. Watchfire Corporation. All Rights Reserved. 7

EXPLOITATION 1: DOUBLE REFERENCE EXPLOITATION

The basic principle behind the two exploitations we discuss in this paper is overwriting the old object
memory space with malicious data. Understanding the way compilers implement their objects is
essential to being able to overwrite an original object with appropriate data, so that our malicious code
will be executed in the context of the vulnerable application.

The following figure illustrates an exploited code being executed by the application, and the application
relevant memory sections. The call to the virtual function is performed by: CALL [EAX + OFFSET]
where OFFSET is the offset of the virtual function which is being called. We will assume that we can
change the content of the old object, and we will set it so that it will result in the following flow:

VFTABLE

VFTABLE + 4

VFTABLE + 8

VFTABLE + C

VFTABLE + 10

VFTABLE Pointer

SHELLCODE

…

MOVE EAX, [ECX]

CALL [EAX + 8]

…

ECX

CALL/JMP ECX

EAX

This is the executable code
that calls a virtual function
of the dangling pointer’s
object, resulting in the flow
below.

The first DWORD of any
object is intended to be a
pointer to its VFTABLE.

The original object data will be
interpreted as code and will get
executed by the application.

2

This is the area of the memory
that will get executed. We will
make sure it contains a CALL
or JMP to our shellcode (which
is pointed to by ECX).

3

4

The register ECX is the
dangling pointer itself and
points to the original
object’s location. EAX is set
to [ECX] so it points to the
location of the VFTABLE.

1

Code:

Flow:

DANGLING POINTER EXPLOITATIONS

© Copyright 2007. Watchfire Corporation. All Rights Reserved. 8

In order to exploit the vulnerability, we will set the first DWORD of the malicious data to contain a
special address that will take the place of the object’s VFTABLE. The rest of the memory will contain a
shellcode that will be executed.

As mentioned above, a virtual function call is performed with CALL [EAX + OFFSET]. Our new address
must therefore be chosen so that [ADDRESS + OFFSET] will point to CALL/JMP ECX. This is a tricky
task to pull off. How is it done?

In order to create the flow we described earlier, we need to:

1. Find an address somewhere in the memory that holds CALL/JMP ECX, which we will refer to it
as the Call Address. Next we need to find a location somewhere in the memory that points to the
Call Address (we will refer to that memory address as PCall Address).

2. Change the VFTABLE pointer so that its value is (PCall Address – OFFSET), which we’ll call the
Jumping Address.

3. Ensure that our new "VFTABLE pointer", when interpreted as code, can be executed and doesn’t
significantly change the application flow and the content of the registers. This is important
because the CALL/JMP ECX is transferring the execution of the application to the start of our
inserted buffer that holds the Jumping Address.

In our research we found that this task is very hard to accomplish manually with standard tools. One
needs to locate all CALL/JMP ECX opcodes in the application code and then search for pointers to one
or more of them. We automated the task using a “PYDBG” script. (PYDBG is a highly recommended tool
for automating reverse engineering and exploitation tasks.) Using an automation script made the task
relatively simple.

DANGLING POINTER EXPLOITATIONS

© Copyright 2007. Watchfire Corporation. All Rights Reserved. 9

MULTIPLE INHERITANCE

The above exploitation example dealt with objects without multiple inheritance. A slight difference in
the way objects with multiple inheritance are compiled can make exploitation much simpler.

Implementation

Let us consider a second class called Class_B which has two members and two virtual functions as
follows:

The memory layout of an instance of this class is shown in the following figure:

class Class_B
{

 long member1_of_B;
 long member2_of_B;

 public :
 virtual int vfunc_B1();

 virtual int vfunc_B2();
};

vfunc_B1 Code Class_B VFTable Object’s memory

vfunc_B1 address

vfunc_B2 address

VFTABLE Pointer

member1_of_B

Assembly code

The memory of an instance of Class_B:
The first DWORD is a pointer to the
VFTABLE of Class_B, while the rest of the
memory contains the object’s members.

The class’ VFTABLE :
This is an array of pointers
to the virtual functions of the
class.

vfunc_B2 Code

Assembly code

member1_of_B

DANGLING POINTER EXPLOITATIONS

© Copyright 2007. Watchfire Corporation. All Rights Reserved. 10

Now let’s consider an inherited class that inherits from both Class_A and Class_B. This class has its own
member, and it overwrites one of Class_A’s virtual functions and one of Class_B’s virtual functions:

The memory layout of an instance of this class is shown in the following figure:

This implementation is interesting because it produces another VFTABLE inside the object instance that
can be overwritten and that doesn’t lie on the first DWORD of the memory chunk. This is much better
for the attacker because he doesn’t need to control the first DWORD of new allocated memory (which
can be difficult sometimes, especially when the allocated memory is meant to store an object, and
therefore the first DWORD contains the VFTABLE of that new object).

class Inherited: public Class_A, public Class_B
{

public :
 virtual int vfunc_A2();
 virtual int vfunc_B2();

};

Note that th ese VFTABLES are not
identical to the parents’ classes
VFTABLES because some of the virtual
functions are redefined in the inherited
class

Class_A::vfunc_A1

Inherited::Class_A
VFTable Object’s memory

vfunc_A1 address

vfunc_A2 address

A VFTABLE Pointer

member_of_A

Assembly code

The object’s memory consists of the
two objects it inherits from, one after
the other

Inherited ::vfunc_A2

Assembly code

Class_B::vfunc_B1

Inherited::Class_B
VFTable

vfunc_B1 address

vfunc_B2 address

B VFTABLE Pointer

member1_of_B

Assembly code

Inherited ::vfunc_B2

Assembly code

Member2_of_B

C
la

ss
 A

C

la
ss

 B

DANGLING POINTER EXPLOITATIONS

© Copyright 2007. Watchfire Corporation. All Rights Reserved. 11

4. PINPOINTING THE OLD OBJECT ’S MEMORY

Now that we’ve learned how to craft new data with which to overwrite the old object’s memory, we
need to discover ways to put the crafted data into the old object’s memory chunk. This section will
discuss the Windows allocation API, some of its implementation details and some methods of locating
the application’s allocations. Finally, we will provide a summary of a better exploitation technique that
does not rely on the static address containing particular code (as the Double Reference exploit does).

ALLOCATION API

The compiler may use different heaps for allocating and de-allocating memory chunks. Each Windows
application has two different heaps by default: the application heap and C-runtime heap. Besides these,
each application can create additional heaps and use them separately.

There are three types of API function that Windows provides us with to allocate and de-allocate heap
memory:

1. C-runtime functions like: malloc, new and free. All the functions in this group allocate and de-
allocate memory in the C-runtime heap.

2. Global, local and virtual functions, which will mostly allocate and de-allocate memory in the

application default heap.

3. Heap functions which are responsible for allocating and de-allocation heap-specific memory.
These functions create new heaps inside an application memory space and allocate memory
inside them.

In order to allocate data into a specific heap, one should use the specific API that allocates memory into
that heap. The most relevant group from the above list for the Dangling Pointer exploit is the C-runtime
functions, because most of the object allocations will be performed with the “new” operator, which will
allocate a memory chunk inside the C-runtime heap. (More information about the above API can be
found in MSDN. [3])

ALLOCATION IMPLEMENTATION

There are a few facts about the windows allocation mechanism that need to be expanded upon before we
continue our discussion about Dangling Pointer:

1. There is a linked-list of freed memory buffers for each different buffer size between 8 and 1024
bytes—in 8 byte increments—which is called a “lookaside list”. Each heap has its own lookaside
list that is responsible for handling the heap’s allocations and de-allocations.

2. The next time an allocation is being made, the linked list that contains buffers of that size is
checked, and if it’s not empty, the first item in it is allocated and returned to the application.

3. Each freed memory buffer is merged with its adjacent freed buffers, into a larger free buffer.
4. The first DWORD of each freed buffer on the list contains a pointer to the next buffer on the list—

or 0 if it’s the last one.

DANGLING POINTER EXPLOITATIONS

© Copyright 2007. Watchfire Corporation. All Rights Reserved. 12

A lookaside list example is shown below:

LOCATE MEMORY ALLOCATIONS

As we said above, in order to exploit the Dangling Pointer, we need to be able to overwrite the object’s
VFTABLE with our own value (after the object’s de-allocation and before the virtual function call). This
means that we need to locate places where:

1. The application allocates the exact amount of memory required for the malicious data
2. The memory chunk’s content is filled with user supplied data
3. The allocation must assign memory in the old object’s heap, and not a different heap.

The likelihood of fulfilling these conditions is not as far fetched as one might think. We illustrate this
with an example on the IIS server, later in this paper.

There are two main ways to find relevant memory allocation: Static and Dynamic.

Static Analysis

One option is to open the application and its DLLs in a disassembler and look for all the places where
memory allocation happens in the relevant heap and with the relevant size (or a dynamic size). Most
allocations will be of a different size to what we are looking for and will be ruled out. This search can be
manually performed or automated using a python interface to IDA (IDAPython). When an appropriate
allocation is found, we need to determine when it gets executed and whether it allocates user-defined
data.

A de-allocated buffer

Pointer to the next

…

Another de-allocated
buffer

null

…

The first DWORD contains
a pointer to the next object
in the lookaside list.

The first DWORD contains
null as this will be the last
member of the lookaside list.

Lookaside list
base pointer

The lookaside list

DANGLING POINTER EXPLOITATIONS

© Copyright 2007. Watchfire Corporation. All Rights Reserved. 13

Dynamic Analysis

Another option is to set breakpoints on all of the APIs that allocate heap space on the relevant heap, and
let the application run with as many scenarios as you can think of. After each break, check the size of
allocation and the data that was inserted into the allocated buffer, since the last break.

This method can produce quick results.

LOOKASIDE INJECTION EXPLOIT

In applications that give the attacker easy control over allocations and de-allocations (browsers with
JavaScript, for example) [4], an attacker can exploit this issue by doing the following:

1. Empty the lookaside list for the object’s size by allocating many buffers of that size
2. Fill one of them with his shellcode.
3. De-allocate two of the buffers so that the shellcode buffer will be de-allocated first.

The lookaside list should look like this:

4. Trigger the bug that frees the object. The freed object then becomes the first element in the
lookaside list, and its first DWORD is a pointer to the next buffer in the lookaside list—which is
also treated as the object’s VFTABLE. Note this buffer’s first DWORD contains a pointer to a
buffer holding the shellcode and this DWORD is also considered as a pointer to the object’s first
virtual function code.

The lookaside list should now look like this:

The de-allocated buffer

A VFTABLE Pointer

…

The shellcode buffer

null

shell code

The first DWORD contains
a pointer to the next object
in the lookaside list which
will contain the shell code.

The first DWORD contains
null as this will be the last
member of the lookaside list.

Lookaside list
base pointer

The lookaside list

DANGLING POINTER EXPLOITATIONS

© Copyright 2007. Watchfire Corporation. All Rights Reserved. 14

All there is left to do is make the application use the Dangling Pointer to call the first virtual function of
the object it points to. This will cause the shellcode to execute, compromising the system.

As noted above, most objects will contain a virtual destructor and we’ve noticed that it in most of the
objects we reviewed it was the first virtual function. This means that this exploit will run when the
application calls the destructor of the object pointed to by the Dangling Pointer—which in most cases
will happen after the application has finished using that object.

Readers familiar with ASLR defense mechanism may be interested to know that this technique is useful
for overcoming it, since it does not rely on static address containing any particular code.

The de-allocated object

A VFTABLE Pointer

…

The shellcode buffer

null

shell code

This is the original de-
allocated object of the
Dangling Pointer bug

This buffer is treated as the
code of the object’s first
virtual function

The lookaside list

The de-allocated buffer

A Function pointer

…

This buffer is treated as the
object’s VFTABLE.
The first DWORD contains a
pointer to the shellcode buffer
as it is the next member of the
lookaside list.

DANGLING POINTER EXPLOITATIONS

© Copyright 2007. Watchfire Corporation. All Rights Reserved. 15

5. IIS BUG EXPLOITATION – A REAL WORLD EXAMPLE

FINDING THE BUG

In December 2005, a Dangling Pointer was found in the IIS web server version 5.1[2], which is the default
IIS server that ships with Microsoft Windows XP SP2. A slight variation of this bug was discovered
while scanning the IIS server with AppScan: Watchfire’s web application security assessment tool. This
scan resulted in a crash of the IIS server process (inetinfo.exe).

We were able to reproduce the bug with a sequence of four HTTP requests and crash the server. The four
requests are simple GET requests to http://localhost/IIS/Index.aspx/~1, where index.aspx can be any
ASPX page on your server. This can be reproduced by simply browsing to
http://localhost/IIS/Index.aspx/~1 with your web browser and refreshing the page three times.
After researching the problem we discovered that it was a Dangling Pointer bug.

UNDER THE HOOD

The IIS server uses a pointer to an object that is de-allocated when the above sequence of requests is sent
to the server.

The first DWORD of the de-allocated object, which usually points to the object’s VFTABLE, is cleared
when the de-allocation is called. The next time the server tries to call a virtual function of the object, the
application will try to find the VFTABLE at location 0x00000000 which will result in a crash.

Using the techniques described above we were able to force the server to reallocate memory in the same
location and set its memory with our own data. This allowed us to inject pieces of code to be executed on
the server using the “System” credentials.

We have found two sections in the code are suitable for exploitation using the Double Reference Exploit,
described in detail below.

EXPLOIT

De-allocating the Object

In order to de-allocate the object that will later be used, we send a sequence of three requests as
described above. (A fourth request uses the object and results in a server crash).

Surfing to any ASPX or ASMX pages and appending the string “/~1” (without quotes) at the end of the
URL – (For example: http://localhost/IIS/Index.aspx/~1) exactly three times, will de-allocate the
memory used by the object, and initiate the Dangling Pointer scenario.

DANGLING POINTER EXPLOITATIONS

© Copyright 2007. Watchfire Corporation. All Rights Reserved. 16

Configuration Item

One of the ways we managed to locate a memory allocation that was the exact size of the old object’s
data (0xB0 bytes) and replace it with user-supplied data was through an IIS configuration item.

You can reproduce our exploitation by doing the following:

1. Open Internet Information Services (Control Panel |Administration tools) and go to Properties
of the “Default Web Site”.

2. Make sure that under ASP.NET, the ASP.NET Version it is set to “2.0”

DANGLING POINTER EXPLOITATIONS

© Copyright 2007. Watchfire Corporation. All Rights Reserved. 17

3. Click the “Configuration…” button on the “Home Directory” tab.

4. Edit one of the ASP application mappings extensions (for example “.asa”), and insert the content
of your Jumping Address and shellcode to the “Limit To” entry (see Shellcode section below).
This data will take the place of the old object’s memory and should be crafted as described in the
“Code Injection” section.

DANGLING POINTER EXPLOITATIONS

© Copyright 2007. Watchfire Corporation. All Rights Reserved. 18

The configuration item is now set and in order to make the application allocate it into the
memory.

5. (Re-allocating the Memory) Make an additional request to a regular html or image file that is
found in a different virtual directory.
You can use the default help gif found in http://localhost/help.gif.
This request allocates memory for the inserted configuration item and will usually get the old
objects’ address.

6. (Triggering the Virtual Function) Run “net stop w3svc” from the command line. This makes the
application call one of the object’s virtual functions (call [EAX + 0x18] in 0x5AA52DE5). You can
set a break point at this address in order to determine the fact that ECX is pointing to the inserted
configuration item (the old object’s address).

(Results) The server crashes, and your shellcode is executed.

Note that the shellcode is executed only if all the previous steps worked smoothly. It might fail if a

DANGLING POINTER EXPLOITATIONS

© Copyright 2007. Watchfire Corporation. All Rights Reserved. 19

small part of the shellcode is overwritten with random bytes. These random bytes might interfere with
the execution of your code.

Shellcode

Writing a shellcode for this exploit can be tricky. The first DWORD which contains the address of the
new “VFTABLE” will also be executed as code and therefore the address, interpreted as code, must not
change the value of ECX or create an exception. Another problem is that many unprintable characters are
filtered out from the configuration item and all lower-case characters are converted to upper-case; this
limitation affects both the Jumping Address and the code itself. In addition, the only register that points
somewhat near the shellcode is ECX, which points to the start of the object. Last but not least is the fact
that only 174 bytes of memory are available for use.

Despite all these limitations a skilled security researcher can write a working exploit for this
vulnerability using known methods.

6. RECOMMENDATIONS

The best way to improve software security is through education for secure programming practices,
which eliminates a majority of vulnerabilities early in the software development life cycle. There are also
some defense mechanisms that are meant to block code execution exploitation for an existing bug, for
example:

1. NX bit – a hardware supported feature that lets software decide which pages of code will contain
executable code. If the application tries to execute code outside of those pages, an exception occurs and
the execution stops.
2. ASLR – a software feature that randomizes the addresses of all the DLLs that are loaded into the
application’s address space. The randomness makes the bug harder to exploit for many reasons but the
main reason is the fact that the Jumping Address will probably contain random data.

All of the aforementioned techniques (and others) can be bypassed and therefore should not be relied
upon and should only be used as a secondary safety mechanism.

In addition to the above, an infrastructure defense mechanism can also be useful. One can provide better
defense for applications if the compiled software contains a sanity check for its VFTABLES before usage.
This kind of sanity check already exist in the heap to defend against other heap-based security bugs.

This method should only be considered as a secondary defense mechanism as the only way to be really
protected is by writing secure software.

DANGLING POINTER EXPLOITATIONS

© Copyright 2007. Watchfire Corporation. All Rights Reserved. 20

7. SUMMARY

The Dangling Pointer bug, contrary to common belief, is a high security risk and can be exploited for
arbitrary code execution. We have proved that exploitation of this bug is possible and provided a
detailed description of how to do it.

In conclusion watch your pointers!

DANGLING POINTER EXPLOITATIONS

© Copyright 2007. Watchfire Corporation. All Rights Reserved. 21

8. REFERENCES

1. “Using freed memory” OWASP page -
http://www.owasp.org/index.php/Using_freed_memory

2. IIS advisory with a public known Dangling Pointer Bug in IIS -
http://www.determina.com/security_center/security_advisories/securityadvisory_dec202005.a
sp

3. MSDN memory management API - http://msdn2.microsoft.com/en-us/library/aa366781.aspx
4. Heap Feng Shui in JavaScript - http://www.determina.com/security.research/presentations/bh-

eu07/bh-eu07-sotirov-paper.html
5. Reliable Windows Heap Exploits -

http://www.cybertech.net/~sh0ksh0k/projects/winheap/CSW04%20-
%20Reliable%20Windows%20Heap%20Exploits.ppt

9. ACKNOWLEDGEMENTS

We are grateful to the following people for their contribution to this paper:

• Ory Segal

• Danny Allan

• Jonathan Cohen

• Sue Ann Wright

